目标:最近在看论文,需要一些基本的公式推理,经常遇到三重积的等式。为了更深入的理解。因此推导一下这类公式。

定义:
向量三重积
a → × ( b → × c → ) = ( a → ⋅ c → ) ⋅ b → − ( a → ⋅ b → ) ⋅ c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})= (\overrightarrow{a} \cdot \overrightarrow{c}) \cdot\overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \cdot\overrightarrow{c} a ×(b ×c )=(a c )b (a b )c

其中 a → = ( a 0 , a 1 , . . . , a n ) \overrightarrow{a}=(a_0,a_1,...,a_n) a =(a0,a1,...,an); b → = ( b 0 , b 1 , . . . , b n ) \overrightarrow{b}=(b_0,b_1,...,b_n) b =(b0,b1,...,bn); c → = ( c 0 , c 1 , . . . , c n ) \overrightarrow{c}=(c_0,c_1,...,c_n) c =(c0,c1,...,cn)

在空间向量中一般 n = 3 n=3 n=3

证明,它有两种方法可以证明

第一种是最简单的方式,直接展开左右两边的项。
对于叉乘一般情况下是可以转化为矩阵和向量的乘积。转化表示为下面
S k e w ( a ) = [ 0    − a 2    a 1 a 2    0    − a 0 − a 1    a 0    0 ] Skew(a) = \begin{bmatrix} 0 \space \space -a_2 \space \space a_1 \\ a_2 \space \space 0 \space \space -a_0 \\ -a_1 \space \space a_0 \space \space 0 \end{bmatrix} Skew(a)= 0  a2  a1a2  0  a0a1  a0  0
因此得到左边公式为:
a → × ( b → × c → ) = s k e w ( a → ) ( s k e w ( b → ) c → ) = [ 0    − a 2    a 1 a 2    0    − a 0 − a 1    a 0    0 ] [ 0    − b 2    b 1 b 2    0    − b 0 − b 1    b 0    0 ] [ c 0 c 1 c 2 ] = [ 0    − a 2    a 1 a 2    0    − a 0 − a 1    a 0    0 ] [ b 1 c 2 − b 2 c 1 b 2 c 0 − b 0 c 2 b 0 c 1 − b 1 c 0 ] = [ − a 2 ( b 2 c 0 − b 0 c 2 ) + a 1 ( b 0 c 1 − b 1 c 0 ) a 2 ( b 1 c 2 − b 2 c 1 ) − a 0 ( b 0 c 1 − b 1 c 0 ) − a 1 ( b 1 c 2 − b 2 c 1 ) + a 0 ( b 2 c 0 − b 0 c 2 ) ] = [ ( a 1 c 1 + a 2 c 2 ) b 0 − ( a 1 b 1 + a 2 b 2 ) c 0 ( a 0 c 0 + a 2 c 2 ) b 1 − ( a 0 b 0 + a 2 b 2 ) c 1 ( a 0 c 0 + a 1 c 1 ) b 2 − ( a 0 b 0 + a 1 b 1 ) c 2 ] = [ ( a 0 c 0 + a 1 c 1 + a 2 c 2 ) b 0 − ( a 0 b 0 + a 1 b 1 + a 2 b 2 ) c 0 ( a 0 c 0 + a 1 c 1 + a 2 c 2 ) b 1 − ( a 0 b 0 + a 1 b 1 + a 2 b 2 ) c 1 ( a 0 c 0 + a 1 c 1 + a 2 c 2 ) b 2 − ( a 0 b 0 + a 1 b 1 + a 2 b 2 ) c 2 ] = ( a → ⋅ c → ) ⋅ b → − ( a → ⋅ b → ) ⋅ c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) \\ =skew(\overrightarrow{a})(skew(\overrightarrow{b})\overrightarrow{c}) \\ = \begin{bmatrix} 0 \space \space -a_2 \space \space a_1 \\ a_2 \space \space 0 \space \space -a_0 \\ -a_1 \space \space a_0 \space \space 0 \end{bmatrix} \begin{bmatrix} 0 \space \space -b_2 \space \space b_1 \\ b_2 \space \space 0 \space \space -b_0 \\ -b_1 \space \space b_0 \space \space 0 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} =\begin{bmatrix} 0 \space \space -a_2 \space \space a_1 \\ a_2 \space \space 0 \space \space -a_0 \\ -a_1 \space \space a_0 \space \space 0 \end{bmatrix} \begin{bmatrix} b_1c_2-b_2c_1 \\ b_2c_0-b_0c_2 \\ b_0c_1-b_1c_0 \end{bmatrix} \\ \\ =\begin{bmatrix} -a_2(b_2c_0-b_0c_2) + a_1(b_0c_1-b_1c_0) \\ a_2(b_1c_2-b_2c_1) - a_0(b_0c_1-b_1c_0) \\ -a_1(b_1c_2-b_2c_1) + a_0(b_2c_0-b_0c_2) \end{bmatrix} = \begin{bmatrix} (a_1c_1+a_2c_2)b_0 - (a_1b_1+a_2b_2)c_0 \\ (a_0c_0+a_2c_2)b_1 - (a_0b_0+a_2b_2)c_1 \\ (a_0c_0+a_1c_1)b_2 - (a_0b_0+a_1b_1)c_2 \end{bmatrix} \\ = \begin{bmatrix} (a_0c_0+a_1c_1+a_2c_2)b_0 - (a_0b_0+a_1b_1+a_2b_2)c_0 \\ (a_0c_0+a_1c_1+a_2c_2)b_1 - (a_0b_0+a_1b_1+a_2b_2)c_1 \\ (a_0c_0+a_1c_1+a_2c_2)b_2 - (a_0b_0+a_1b_1+a_2b_2)c_2 \end{bmatrix} = (\overrightarrow{a} \cdot \overrightarrow{c}) \cdot\overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \cdot\overrightarrow{c} a ×(b ×c )=skew(a )(skew(b )c )= 0  a2  a1a2  0  a0a1  a0  0 0  b2  b1b2  0  b0b1  b0  0 c0c1c2 = 0  a2  a1a2  0  a0a1  a0  0 b1c2b2c1b2c0b0c2b0c1b1c0 = a2(b2c0b0c2)+a1(b0c1b1c0)a2(b1c2b2c1)a0(b0c1b1c0)a1(b1c2b2c1)+a0(b2c0b0c2) = (a1c1+a2c2)b0(a1b1+a2b2)c0(a0c0+a2c2)b1(a0b0+a2b2)c1(a0c0+a1c1)b2(a0b0+a1b1)c2 = (a0c0+a1c1+a2c2)b0(a0b0+a1b1+a2b2)c0(a0c0+a1c1+a2c2)b1(a0b0+a1b1+a2b2)c1(a0c0+a1c1+a2c2)b2(a0b0+a1b1+a2b2)c2 =(a c )b (a b )c

证明完毕。

第二种方法: 具有几何意义的方式。它具有启发式的那种。建议使用这种方式来证明上面的三重积的等式。
为了能够方便大家理解,画出图像,得到下图

在这里插入图片描述

因为叉乘的积,是两个向量的垂直向量。比如 b → × c → \overrightarrow{b} \times \overrightarrow{c} b ×c ,它是垂直于 b → , c → \overrightarrow{b},\overrightarrow{c} b ,c 的两个向量所在的平面。
同时任意的向量 a → \overrightarrow{a} a b → × c → \overrightarrow{b} \times \overrightarrow{c} b ×c 叉乘。得到的向量一定是平行于 b → , c → \overrightarrow{b},\overrightarrow{c} b ,c 的两个向量所在的平面。(红色的线段表示)。因此可以写成如下:
a → × ( b → × c → ) = m b → + n c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})=m\overrightarrow{b}+n\overrightarrow{c} a ×(b ×c )=mb +nc
因为红色向量 a → × ( b → × c → ) \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) a ×(b ×c ) a → \overrightarrow{a} a 垂直。因此:
a → ⋅ ( a → × ( b → × c → ) ) = 0 = > a → ⋅ ( m b → + n c → ) = 0 = > m ( a → ⋅ b → ) + n ( a → ⋅ c → ) = 0 \overrightarrow{a} \cdot(\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})) = 0 \\ =>\overrightarrow{a} \cdot(m\overrightarrow{b}+n\overrightarrow{c}) = 0 \\ =>m(\overrightarrow{a} \cdot \overrightarrow{b}) + n(\overrightarrow{a} \cdot \overrightarrow{c})=0 a (a ×(b ×c ))=0=>a (mb +nc )=0=>m(a b )+n(a c )=0
为了解决上面的公式,我们使用构造法,构造两个数使得上面的公式成立。构造如下:
存在 p ∈ R p\in R pR;且 m = p ( a → ⋅ c → ) m=p(\overrightarrow{a} \cdot \overrightarrow{c}) m=p(a c ); n = − p ( a → ⋅ b → ) n=-p(\overrightarrow{a} \cdot \overrightarrow{b}) n=p(a b ),使得上面的公式恒成立。为了方便理解,构造的项带入公式 m ( a → ⋅ b → ) + n ( a → ⋅ c → ) = 0 m(\overrightarrow{a} \cdot \overrightarrow{b}) + n(\overrightarrow{a} \cdot \overrightarrow{c})=0 m(a b )+n(a c )=0
m ( a → ⋅ b → ) + n ( a → ⋅ c → ) = 0 = p ( a → ⋅ c → ) ( a → ⋅ b → ) − p ( a → ⋅ b → ) ( a → ⋅ c → ) = 0 m(\overrightarrow{a} \cdot \overrightarrow{b}) + n(\overrightarrow{a} \cdot \overrightarrow{c})=0 \\ =p(\overrightarrow{a} \cdot \overrightarrow{c})(\overrightarrow{a} \cdot \overrightarrow{b})-p(\overrightarrow{a} \cdot \overrightarrow{b})(\overrightarrow{a} \cdot \overrightarrow{c})=0 m(a b )+n(a c )=0=p(a c )(a b )p(a b )(a c )=0
代入的等式可以看到上面是一个中恒等式。

上面的等式与向量 a → \overrightarrow{a} a , b → \overrightarrow{b} b , c → \overrightarrow{c} c 取值无关。
因此将 m = p ( a → ⋅ c → ) m=p(\overrightarrow{a} \cdot \overrightarrow{c}) m=p(a c ); n = − p ( a → ⋅ b → ) n=-p(\overrightarrow{a} \cdot \overrightarrow{b}) n=p(a b ),代入到 a → × ( b → × c → ) = m b → + n c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})=m\overrightarrow{b}+n\overrightarrow{c} a ×(b ×c )=mb +nc ,得到如下公式:
a → × ( b → × c → ) = m b → + n c → = p ( a → ⋅ c → ) b → − p ( a → ⋅ b → ) c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})=m\overrightarrow{b}+n\overrightarrow{c}=p(\overrightarrow{a} \cdot \overrightarrow{c})\overrightarrow{b}-p(\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{c} a ×(b ×c )=mb +nc =p(a c )b p(a b )c

因为上面公式和向量 a → \overrightarrow{a} a , b → \overrightarrow{b} b , c → \overrightarrow{c} c 无关,可以采用简单的向量 a → = [ 1 , 1 , 1 ] \overrightarrow{a}=[1,1,1] a =[1,1,1]; b → = [ 0 , 1 , 0 ] \overrightarrow{b}=[0,1,0] b =[0,1,0]; c → = [ 0 , 0 , 1 ] \overrightarrow{c}=[0,0,1] c =[0,0,1]
带入相应的简单的公式,就可以得到 p = 1 p=1 p=1
证明完毕。

参考资料如下:
https://www.youtube.com/watch?v=4U5fkwYDvZg

转载版权:乐易云香港服务器 乐易云美国服务器

转载标题:向量三重积的等式求导证明 转载地址:https://www.123yun.com/article/2566.html

dell服务器橙色闪烁 服务器dell戴尔 戴尔服务器dell dell服务器经常死机

内容来源于网络如有侵权请私信删除